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Abstract—Utilising deep learning image classification to auto-
matically annotate subsea pipeline video surveys can facilitate
the tedious and labour-intensive process, resulting in significant
time and cost savings. However, the classification of events
on subsea survey videos (frame sequences) by models trained
on individual frames have been proven to vary, leading to
inaccuracies. The paper extends previous work on the automatic
annotation of individual subsea survey frames by comparing
the performance of 2D and 3D Convolutional Neural Networks
(CNNs) in classifying frame sequences. The study explores the
classification of burial, exposure, free span, field joint, and anode
events. Sampling and regularization techniques are designed to
address the challenges of an underwater inspection video dataset
owing to the environment. Results show that a 2D CNN with
rolling average can outperform a 3D CNN, achieving an Exact
Match Ratio of 85% and F1-Score of 90%, whilst being more
computationally efficient.

Index Terms—Deep Learning, Subsea Inspection, Video Clas-
sification, Underwater Pipelines

I. INTRODUCTION

SUBSEA pipeline inspection is an essential process within
the Oil and Gas industry to ensure interrupted production

as any potential risk must be identified prior to criticality
in order to mitigate equipment damage and environmental
threats. Remotely Operated Vehicles (ROVs) are employed
routinely for subsea pipeline and power transmission cable
inspections [1]. These vehicles are submerged and driven
above the pipeline, controlled via a cable connected to an off-
shore vessel, acquiring inspection data from various sensors
(e.g., visual, echo-sounders, laser scanning and magnetometers
sensors) [2]. The data are inspected by survey supervisors on
the vessel to assess the overall condition of a key asset. Fol-
lowing the capture of the inspection video, data coordinators
record logs of key events observed during the survey both in
real-time and subsequently through a Quality Control (QC)
process. Timestamp and location are used to annotate events
such as pipeline exposure, burial, field joints, anodes, free
spans, and debris; examples of such events are illustrated in

The work was partially supported by The Data Lab Innovation Centre,
Edinburgh, Scotland, UK (project registration code 16270), the Oil and Gas
Innovation Centre, Aberdeen, Scotland UK (project registration code 18PR-
16) and N-Sea, Zierikzee, Netherlands.

Fig. 1. 4-frame Examples of Events of Interest

Figure 1. Given the importance of subsea pipeline inspection,
coupled to the challenges of capturing subsea visual footage
e.g., highly variable illumination and sea life, marine growth,
sand algae [3], a range of methods to automate the annotation
process have been proposed in recent years [4]–[7], to reduce
the annotation burden, increase reliability, robustness and
inspection speed.

Here, previous research for the annotation of subsea pipeline
surveys [7] is extended to video frame sequence classification.
The main contributions are summarized as follows:
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Fig. 2. 2D and 3D Spatio-Temporal Architectures for Annotation of Subsea
Pipeline Surveys

• The use of an extended dataset, comprising short video
clips for the five events of interest (exposure, burial,
free span, field joint, and anode), instead of individual
frames. The nature of the dataset is such that high
class imbalance and label noise are present inherently. A
balanced sampling and label smoothing techniques have
therefore been implemented, in addition to spatial data
augmentation, to make the model invariant to camera
positioning/movement and improve generalisation.

• A 2D IBN-ResNet50 [8] network that classifies individual
frames followed by a Rolling Average mechanism is
compared to a 3D IBN-ResNet50 architecture that creates
a single prediction per video clip. Both network archi-
tectures utilise Instance Batch Normalisation (IBN) [9]
between convolutional layers to improve model perfor-
mance for data acquired under varying lighting conditions
and colour contrast changes. The network architecture for
both models are shown in Figure 2.

II. RELATED WORK

The automation of Subsea Pipeline Inspection relies on
data collected from the instrumentation mounted on Remote
Operating Vehicles. Jacobi et al. [10], [11] proposed a pipeline
tracking method for Autonomous Underwater Vehicle (AUV)
guidance by fusing optical, magnetic, and acoustic sensor data
collected in a simulation setting. Bharti et al. [12] used multi-
beam echo-sounder data for pipeline detection and estimation
of orientation. Narimani et al [13] proposed a pipeline and
cable tracking technique that determines the angle between
the vehicle and pipeline by converting the images to grey-
scale and applying the Hough transformation. A real-time
vision-based detection system for underwater pipelines using
edge-based image processing to detect pipeline contours and
a Kalman filter for de-noising was developed by Zingaretti et
al. [14], [15]. Ortiz et al. [16] proposed a method for identify-
ing susbsea cable contours in tandem with a linear Kalman fil-
ter to predict the contours in the following frame whilst Asif et
al. [17] proposed a pipeline tracking method that utilises the
Bresenham line algorithm and B-Spline to detect noise-free
pipeline contours. Khan et al. [18] reported on a method for

underwater pipeline image enhancement using wavelet auto-
encoding and K-means for clustering corrosion segments. All
reported approaches to date utilise traditional signal processing
on the sensor data to detect and track pipeline contours, unlike
the work presented here which classifies specific events of
interest.

Recently, the adoption of deep learning approaches to
process subsea imagery has yielded excellent performance in
multiple underwater applications. Martin-Abadal et al. [19]
proposed a fully convolutional network for the semantic
segmentation of Posidonia Oceanica and deployed it on a
Turbot AUV for online segmentation of meadows. Obyrne et
al. [20] utilises photo-realistic synthetic imagery for training
SegNet [21] for bio-fouling detection on marine structures. A
deep learning method for classifying coral reefs, trained on
images of the sea floor acquired by ROVs and AUVs was
proposed by Mahmood et al. [22] whilst Jeon et al. [23]
introduced a pose estimation network for underwater objects,
relying the utilization of synthetic data to improve underwater
deep learning approaches. King et al. [24] carried out a com-
parison between four Fully Convolutional Neural Networks
(FCNN) [25] for semantic segmentation of coral reef images;
Fulton et al. [26] developed a deep learning approach for
detecting trash in realistic underwater environments; Xu et
al. [27] used YOLO [28] for fish detection in real-world water
power sites; and Guo et al. [3] proposed a Generative Adver-
sarial Network [29] that enhances the quality of underwater
images.

A number of deep learning based methods have been
proposed for subsea pipeline inspection and event annota-
tion applications. Petraglia et al. [5] compared a Multilayer
Perceptron (MLP) with a single hidden layer, trained on
features extracted from 3-level Wavelet decomposition, with a
Convolutional Neural Network (CNN) classifying four types
of events: inner coating exposure, algae, flange and concrete
blankets. The CNN outperformed the MLP without the need
for manual feature extraction. Bharti et al. [6] fine-tuned
U-Net [30] in a self-supervised setting utilising multi-beam
echosounder data for detection and segmentation of subsea
pipelines. In our previous work [7], a framework for automatic
subsea pipeline image annotation was presented by using
transfer learning on ResNet-50 [31] in a multi-label image
classification setting with Precision-Recall curves for optimal
threshold selection.

Deep learning models presented in the literature have shown
good performance on single frames. The study reported here
details a comparison of two CNN-based spatio-temporal archi-
tectures designed to automate subsea survey video annotation.
The two models are compared based on their classification per-
formance on survey frame sequences, training and inference
times as well as the samples used in their training, representing
the first reported use of deep learning approaches that operate
directly on subsea pipeline video data instead of single frames.
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Fig. 3. 3D ResNet block and 3D IBN-ResNet block

III. MODEL ARCHITECTURE

The core task is to classify/annotate images or frame se-
quences of subsea pipelines. CNNs have properties such as
local connectivity, shared weights and spatial downsampling
that make them ideally suited to this task [32]. Although CNNs
have been applied extensively in the computer vision domain,
they have also been utilised in the analyses of various data
in multidimensional arrays. For example, a 1D CNN can be
used for text and time series data (1D signal) classification,
2D CNN for audio and image applications, 3D CNN for
video, and volumetric data. With the advancements of low-cost
computational power and 3D sensors, 3D computer vision is
becoming increasingly commonplace in many industrial and
user applications such as surveillance, industrial inspection,
and health.

Typically CNNs require extensive datasets for training due
to the large number of parameters that require optimisation.
Techniques such as Transfer Learning [33] reduce the data
volume demand. For example in 2D CNNs for image oriented
tasks, models are pre-trained on the large ImageNet [34]
dataset and subsequently re-trained on an application-specific
dataset, the latter often smaller in size. A similar approach
is reported by Hara et al. [35], [36] where a 3D CNN with
random weight initialisation is trained on the Kinetics [37]
dataset and transfer learning is explored on other datasets. The
3D convolution is obtained by convolving a 3D filter kernel
through stacking multiple continuous frames to produce a 3D
cube, allowing 3D CNNs to create hierarchical representations
linking multiple consecutive frames to capture motion-related
information [38]. However, the additional kernel dimension is
at the expense of increased computational intensity.

The study reported in the paper compares the performance
of two spatio-temporal CNN architectures to annotate subsea

survey frame sequences, as illustrated in Figure 2, along with
an evaluation of their size and efficiency in terms of training
and evaluation of performance times. For the 2D model, each
frame in the sequence is applied through a 2D CNN to create
a prediction for every single frame. Given the confidence of
the network varies from frame to frame, this approach can
lead to sporadic False Positives (FP) and False Negatives (FN)
which are physically not possible during the survey as the
inter-frame spacing is short. Filtering such as averaging across
the sequence can be applied post-prediction to mitigate against
sporadic fluctuations and produce a final annotation. In the 3D
case, the entire sequence is used as the input to a 3D CNN that
outputs a single annotation, reducing fluctuations inherently.

Subsea video footage varies significantly across the pipeline
length governed by diverse lighting conditions, bathymetry,
sand and particle agitation, fouling, and vegetation, amongst
others. These environments result in diverse contrasts and
textures of the pipeline objects and events of interest. Instance
Normalization (IN) has been widely used in Style Trans-
fer [39]–[41] to make neural networks invariant to texture and
style changes. Furthermore, Batch Normalization (BN) [42] is
widely used to preserve content-related information. Instance
Batch Normalisation (IBN) [8] combines these two techniques
to increase the robustness of the neural network by filtering
out sample-specific contrast information while preserving the
content information. Results have shown a consistent improve-
ment when the BN layers are replaced by IBN, motivating
the development of 2D and 3D models that utilise a ResNet-
50 [31] and 3D ResNet-50 [35] respectively, both modified to
incorporate IBN layers.

The IBN ResNet architecture is expanded to use 3D convo-
lution kernels that can capture both temporal and spatial infor-
mation. Similar to the 2D IBN-ResNet50 [8], the layers of the
model are changed to perform 3D convolutions, instance, batch
normalization and pooling; a diagram of the 3D IBN-ResNet
block is shown in Figure 3. An adaptive layer consisting of
average and max pooling is introduced after the IBN-ResNet
encoder, and then the features are flattened and concatenated
before being inputted to two fully connected (linear) layers.
Furthermore, BN and Dropout [43] layers are introduced
between the linear layers to regularise the Head/Classifier.

IV. DATASET DESCRIPTION AND SAMPLING

The raw data used are video streams from a North Sea
survey conducted in 2012 covering 201 kilometres. The ROV
camera provides a view of the crown of the pipe, looking
slightly forward, as shown in Figure 1. The video data were
provided in MPEG format with resolution of 576×704 and
frame rate of 25 fps, with each video filenames containing
the timestamp for the start of the inspection. Additionally,
annotations created by trained Data Coordinators containing
the event type and timestamps for the beginning and the end
of each event were provided.
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Fig. 4. Video Clip Distribution of the 5 Events of Interest

A. Dataset Preparation

The event timestamps were used to extract frame sequences
from the appropriate video file using OpenCV [44]. The events
of interest and thus the labels are:

• Burial (B): the pipeline is buried underneath the seabed
and thus protected.

• Exposure (E): the pipeline is exposed; visible and prone
to damage. When the pipeline is exposed, other pipeline
features/events become visible:

– Anode (AN): pipeline bracelet anodes are specif-
ically designed to protect subsea pipelines from
corrosion [45]. Data Coordinators visually recognise
anodes by the banding that appears in the orthogonal
direction of the pipeline; anodes have no surface
vegetation growth.

– Field Joint (FJ): the point where two pipe sections
meet and are welded together, typically occurring
every 12 metres. Data Coordinators recognise Field
Joints due to the depression on the pipeline surface.

– Free Span (FS): pipeline segments that are elevated
and not supported by the seabed (either due to
seabed erosion/scouring or due to uneven seabed
during installation), pose significant risk to the asset;
currents or moving objects (debris, nets and etc.)
could damage the pipeline. FS are more apparent on
the starboard and port video feeds; the centre camera
is used to judge the seabed depth on the pipeline.

Examples of 4-frame sequences can be seen in Figure 1
(4-frame sequences are shown as an example, however the
proposed 3D model utilises 16-frame sequences). The event
distribution of the extracted video clips is shown in Figure 4.
The data set contains 1114 video clips in total, consisting
of 105 clips of burial and 979 clips of exposure, of which
120 clips are single Exposure (E), 477 clips contain Field
Joints (FJ), 109 clips contain Anodes (AN), and 273 clips
contain Free Spans (FS). A balanced sampling technique is

Fig. 5. Histograms of Frames per Event Video Clip

Fig. 6. Total Event Frames

implemented and described in subsection IV-B to tackle the
high class imbalance of the dataset.

The histograms of frames per clip for the 5 events of interest
are shown in Figure 5. The video clips of the 5 events have
varying lengths with 50 and 400 frames being the minimum
and maximum duration respectively. The short events of FJ
and AN last an average of 3-4 seconds (75-100 frames), while
the events of B, E and FS last up to 16 seconds (400 frames).
The short events add some noise to the dataset because of the
start and end timestamp annotations provided. For example,
after experimentation it is observed that for an AN event lasting
100 frames, the anode is actually visible in the middle 70-80
frames. The extra 20-30 frames (i.e. one second) at the start
and end of the event can be described as the transition period
between these short events and the exposure of the pipeline
before and after anodes and field joints are visible.

The combination of the event video clip distribution with
the histograms of frames per event leads to Figure 6, which
demonstrates the total frame distribution of the five events of
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the dataset. The full dataset contains 227,334 frames. It is clear
that the AN is a minority class whereas the FS is the majority
class. The other 3 classes (FJ, B, E) have a similar amount of
frames.

B. Balanced Sampling and Data Augmentation

Data resampling is commonly used in machine learning
to balance datasets, by oversampling minority classes and
undersampling majority ones [46]. By altering the relative fre-
quencies of examples, dataset resampling enables the training
of fairer models, which do not discriminate against minority
classes. Oversampling adds repeated samples from minority
classes, which could cause the model to overfit. To address
this issue, oversampling is combined with image augmentation
techniques. In this work, a balanced sampler has been used that
ensures there is the same number of samples per event in a
mini batch. For example, for a mini batch size of 10, the mini
batch contains 2 samples from each event.

The 3D CNN is trained and tested on 16-frame sequences,
whereas the 2D CNN is trained on single frames, but tested
on 16-frame sequences by utilizing a rolling average of 16
predictions. To get meaningful inputs for both models, frames
and sequences are sampled from the video clips. Not all
frames of every clip are used because consecutive frames are
highly correlated with each other and therefore add no extra
information for learning.

Sampling frames or sequences differs for the events of long
and short duration. For the events of long duration (E, B,
FS) single frames and sequences are sampled every 8 frames.
An example is illustrated in Figure 7 for a long event of
300 frames. For the short events (AN, FJ) exploratory data
analysis has shown that the anode or field joint is usually
visible in the middle of the video clip but sometimes not
present in the initial or final frames. Therefore, a sampling
method has been developed that simulates these events with a
normal distribution with the mean µ being the middle of the
event and a standard deviation σ of 15 frames. An example is
provided in Figure 8 that indicates how the sampling is done
in a short event of 120 frames. The light blue dots represent
the starting frames of the sequences used to train the 3D IBN-
ResNet50 model, but also the individual frames used to train
the 2D IBN-ResNet50 model. Although the sampling is made
in a similar manner, the final number of training data points is
different for the two models because of the sequence length of
the 3D case exceeding the length of some video clips. In the
example of Figure 8, the frame-sequences close to the 80th
frame are discarded.

To address the variability of ROV speed, instead of sampling
directly 16-frame sequences, 50-frame (2 seconds) sequences
are first sampled and then temporal augmentation is applied
to convert to 16-frame sequences. Furthermore, consecutive
frames are highly correlated because of the high frame rate
and thus provide no extra information for learning. When
augmentation is used, two temporal transforms are utilised.

Fig. 7. Example of sampling frames and sequences from long Events of E,
B and FS

Fig. 8. Example of sampling frames and sequences from short Events of AN
and FJ

• Inverse Order, the order of the sequence is sometimes
inverted to address the issue of the ROV changing its
direction of travel during a survey

• Temporal Elastic Transformation, which stretches or
shrinks a video at the beginning, end or middle part to
simulate the ROV speed change.

When no augmentation is used, 50-frame blocks are down-
sampled to 16-frame blocks which is common in video
recognition [47] because of computational constraints. After
getting either single frames or 16-frame sequences, spatial
augmentations are applied to create a more diverse dataset and
tackle susbsea image challenges such as camera movement,
varying lighting conditions, contrast and blurriness from the
seabed sand. During training, every sample is altered with one
or two of the transforms listed below:

• Elastic Transformation which transforms the images
by moving pixels locally around using displacement
fields [48].

• Random Rotation by a maximum of 20 degrees angle to
address the ROV camera rotation.

• Gaussian Blur to address images that contain sand from
the seabed.

• Horizontal Flipping for tackling the overfitting on the
layout words that the inspection software writes to the
frames, and ensuring that a mirror of any event should
also be detected as that.

• Increasing and decreasing the contrast and brightness
to address the varying lighting conditions that subsea
surveys contain.

The Vidaug [49] python library is used for the video aug-
mentation. No spatial transforms are used during the validation
and testing phases.

V. TRAINING CONFIGURATION

Both single frames and frame sequences are labelled using
a multi-label annotation approach since some of the events
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recorded during the pipeline survey are not mutually exclusive.
The pipelines are either buried underneath the seabed or
exposed and thus visible. However, additional events such as
field joints, anodes, and free spans can only be observed when
the pipeline is exposed.

Multilabel image classification has been widely used in
scene understanding [50]–[52], where multiple objects appear
in an image, and thus more than one label can be assigned to a
sample. In the multilabel setting, by applying a sigmoid after
the last linear model, every element in the vector of the final
5 predictions is squashed in the range (0, 1), with 0 being the
negative class and 1 the positive; this is similar to performing
5 different binary classifications [53]. In this work, the two
models are trained by optimizing the Focal Loss metric [54]
as it offers better model calibration [55]. Focal Loss is defined
as:

Focal Loss = −(1− pi)γ · log pi (1)

where pi is the predicted 5-score vector. The term (1−pi)γ ,
with the focusing parameter γ ≥ 0, is a modulating factor to
reduce the influence of correctly classified samples on the loss.
In this work, γ is set to 2. With γ = 0, Focal Loss is equivalent
to Binary Cross Entropy Loss. By using the focus parameter
γ more weight is given to hard missclassified samples than to
easy samples, so the contribution of each sample to the loss
is different depending on the classification error.

Hard or noisy samples in the dataset exist because of wrong
human annotations, camera and ROV movement as well as fish
and vegetation. Another method used in this work to address
the noise in the dataset is label smoothing. Label smoothing
is a regularization technique for classification problems to
prevent the model from predicting the labels too confidently
during training and generalizing poorly. It is also used when
there is a wrong label assignment in the dataset [56]–[58]. It is
implemented by replacing one-hot encoded label vector yhot
with a mixture of yhot and the uniform distribution:

yls = (1− a) · yhot + a/K (2)

where K = 5 is the number of labels, and a is a hyperpa-
rameter that determines the amount of smoothing. If a = 0,
we obtain the original one-hot encoded yhot . If a = 1, we
get the uniform distribution. After experimentation, a was set
to 0.1 in this work.

After the balanced sampling, the 2D CNN is trained with
16,149 samples, while the 3D is trained with 14,876. Although
the sampling is performed in a similar manner for both
architectures, the number of samples is different because some
of the sequences sampled exceed the total length of the video
clip and thus are discarded. The Adam optimizer [59], [60]
is used for the training of both models with a cyclic learning
rate policy [61], [62] with maximum learning rate of 0.001.
The final models are saved based on the lowest validation loss.
The 2D CNN is trained for 30 epochs and the model resulting
in the lower validation loss is acquired on epoch 17, whereas
the 3D CNN is trained for 50 epochs and the same model is

acquired on epoch 27. The 2D CNN converges faster due to
starting with ImageNet weights, while the weights of the 3D
are randomly initialized. In addition, both models are trained
with a similar amount of data, but the 2D model has half the
size of its 3D counterpart. Two NVIDIA A40 GPUs are used
for the training and the mini batch sizes are 40 and 10 for the
2D and 3D model, respectively. The validation and test sets
are the same for both models and consist of 4,658 and 4,746
samples (frame sequences), respectively.

VI. PERFORMANCE EVALUATION

Before sampling individual frames or frame sequences, the
video clips have been split into training (60%), validation
(20%) and test (20%) sets in a stratified way based on the
histograms of frames per event (Figure 5). This ensures that
frames from a particular event only appear in one of these
sets and thus there is no leak of information from one set
to another. The sampling of single frames and sequences
for the validation and test sets is done in the same way as
described for the training set and illustrated in Figures 7 and
8. The difference is that neither resampling nor augmentation
is applied in these sets other than the temporal downsampling
of the frame sequences.

The validation set is used to ensure that there is no
overfitting and to provide a test platform for searching an
optimal confidence threshold for each label using Precision-
Recall curves [63], [64]. For every 16-frame input, the 3D
model produces one single output. In the case of 2D CNN,
the threshold search happens after averaging the 16 confidence
score predictions. The holdout test set, or unseen data, is used
to assess the final performance of the model after the training
and the selection of optimal thresholds. It provides an unbiased
estimate of learning performance.

In this application, the evaluation metrics used for multi-
label classification can be divided into two categories [65];
label-based metrics and example-based metrics. Label-based
metrics evaluate each label separately. Therefore, any metric
that can be used for binary classification can be used as
a label-based metric. These metrics can be computed on
individual class labels and these are reported in Tables I, II to
indicate the challenges of predicting individual labels rather
than relying on aggregated metrics that might not identify
issues with particular classes. These are described by the
following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1-Score =
2 · Precision ·Recall
Precision+Recall

(6)

The aggregated example-based evaluation metrics are de-
signed to compute the average difference between the true
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TABLE I
2D LABEL-BASED TEST SET METRICS

Event Threshold Accuracy Precision Recall F1-Score tn fp fn tp
Exposure 0.518 0.923 0.947 0.957 0.952 722 201 160 3646

Burial 0.485 0.923 0.820 0.778 0.799 3649 157 204 719
Field Joint 0.655 0.969 0.925 0.913 0.919 3750 67 79 833

Anode 0.399 0.947 0.806 0.844 0.824 3904 139 107 579
Free Span 0.777 0.996 1.000 0.987 0.993 3403 0 17 1309

TABLE II
3D LABEL-BASED TEST SET METRICS

Event Threshold Accuracy Precision Recall F1-Score tn fp fn tp
Exposure 0.657 0.935 0.943 0.978 0.960 698 225 80 3726

Burial 0.280 0.933 0.865 0.781 0.821 3694 112 202 721
Field Joint 0.424 0.893 0.714 0.748 0.731 3544 273 229 683

Anode 0.280 0.870 0.562 0.492 0.525 3780 263 348 338
Free Span 0.171 0.981 0.954 0.981 0.968 3341 62 24 1302

TABLE III
MODEL COMPARISON

Models Parameters EMR Precision Recall F1-Score Training Time (2 GPUs) Inference Time (1 GPU) Training Samples
2D IBN-ResNet50 25.6 M 0.853 0.908 0.905 0.901 5 mins per epoch 185± 15 ms per 16 frames 16,149 single frames
3D IBN-ResNet50 45.5 M 0.725 0.879 0.878 0.865 95 mins per epoch 194± 15 ms per 16 frames 14,876 16-frame sequences

labels and the predicted labels. When average performance
metrics are reported (Table III), the metrics are first calculated
for each instance (example) and then averaged.

For aggregated accuracy, however, a stricter metric is used.
Exact Match Ratio (EMR) extends the accuracy used in the
single label setting for multi-label prediction. It does not
distinguish between complete incorrect and partially correct
results. All labels of a sample should be predicted correctly
to count as a successful classification. Formally, the EMR is
defined as

EMR =
1

n

n∑
i=1

I(yi = ŷi) (7)

where I(yi = ŷi is the indicator function equal to 1 only
when every element in the round truth vector yi is equal to
every element in the prediction vector ŷi and n is the number
of input samples.

Precision is the proportion of labels predicted correctly to
the total number of actual labels, averaged over all instances.

Precision =
1

n

n∑
i=1

|yi ∩ ŷi|
|yi|

(8)

Recall is the proportion of labels predicted correctly to the
total number of predicted labels, averaged over all instances.

Recall =
1

n

n∑
i=1

|yi ∩ ŷi|
|ŷi|

(9)

The definition of precision and recall naturally leads to
the following definition for F1-measure (harmonic mean of
precision and recall):

F1-Score =
1

n

n∑
i=1

2|yi ∩ ŷi|
|yi|+ |ŷi|

(10)

VII. RESULTS

The validation set consists of 4669 samples and it is
used for finding the optimal thresholds for the 5 labels by
utilising Precision-Recall curves which balance the trade-off
between False Positives and False Negatives. After setting
these thresholds the models are evaluated on a test set which
contains 4729 samples. The thresholds, as well as the label-
based metrics acquired by the 2D and 3D IBN-ResNet50
models, are presented in Tables I and II, respectively. In these
tables, the cells with the highest F1-score performance are
in bold, because F1-score is chosen as the most important
evaluation metric.

The results of Table I indicate that the 2D classifier for
the events (E, FJ, FS) performs better. On the other hand,
for the events (AN, B) lower F1-Score is achieved although
the Accuracy is in higher levels. The reason that these events
are more challenging than the others is they both belong to
minority classes. For Anodes, this can be seen in Figure 6,
while Burial is mutually exclusive with the Exposure label
which in the balanced sampling accounts for the 80% the data.

A similar behaviour is recognised in the results of Table II
for the FS event, while the performance of the E and B
improves. For the events of AN, FJ the performance drops and
the reason is that the transition from exposure to these classes
can create confusion (noise) in the dataset and lead to either
False Positives or False Negatives. Rolling average helps the
2D model to mitigate this issue, as one final prediction is made
out of 16. A conclusion that can be extracted is that for events
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with greater duration (E, B) the 3D model performs better
than for short duration events such as AN and FJ. However,
in general, the 2D model outperforms its 3D counterpart in
the label-based evaluation metrics.

In the industrial subsea pipeline inspection, it is argued
that it is preferable to overpredict an event than missing it.
If necessary, this can be accommodated by decreasing the
threshold for a particular event (e.g. AN). Precision-Recall
curves offer a balance between False Positives and False
Negatives; the threshold value is a parameter that can be
manually changed depending on the sensitivity that is required
for a specific application.

Finally, Table III provides an overall comparison of the two
approaches presented in this work. The 2D and 3D CNN mod-
els are compared based on their example-based averaged EMR,
Precision, Recall, and F1-Score, training, inference times, and
samples used for training. The evaluation metrics indicate
that the 2D model followed by a rolling average outperforms
the 3D model. In addition, the training of the 2D CNN is
significantly faster due to its fewer parameters (almost half
than the 3D CNN) and the use of pretrained ImageNet-weights
as initialization makes the convergence faster. However, the 3D
model outperforming the 2D model in the events of Exposure
and consequently Burial, in combination with the number of
samples used for the training of both models, can lead to the
conclusion that the 3D model is in need for more training
samples because of its bigger size and more parameters.

The inference time is short and similar for both CNNs, while
the memory usage each of them occupies in a single GPU for
inference is less than 3 GB. Therefore, both models can be
deployed on an ROV with an embedded GPU system.

VIII. CONCLUSIONS

This work provides an analysis and evaluation of two
CNN-based spatio-temporal architectural paradigms towards
automating subsea survey video annotation. Results indicate
that the 2D model can outperform its 3D counterpart, ,
achieving an Exact Match Ratio of 85% and F1-Score of
90%, while being more efficient in training and having fewer
parameters. In addition, label-based metrics indicate that the
2D model performs better in the case of short events of anode
and field joint, while both models have similar performance in
the long events of exposure, burial, and free span. A promising
direction for further work is to investigate the tuning of frame
sequence length while sampling and training to improve the
performance of the 3D model. The impact of this work in
practical contexts is that it develops the potential for an
intelligent decision support tool to be used in conjunction with
human operators to improve decision-making in the annotation
process of subsea pipelines.

ACKNOWLEDGMENT

The work was partially supported by The Data Lab Inno-
vation Centre, Edinburgh, Scotland, UK (project registration
code 16270), the Oil and Gas Innovation Centre, Aberdeen,
Scotland UK (project registration code 18PR-16) and N-Sea,

Zierikzee, Netherlands. The Data Lab and the Oil and Gas
Innovation Centres are funded by the Scottish Funding Council
through the Innovation Centres Programme.

REFERENCES

[1] M. Ho, S. El-Borgi, D. Patil, and G. Song, “Inspection and monitoring
systems subsea pipelines: {A} review paper,” Structural Health
Monitoring, p. 147592171983771, apr 2019. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1475921719837718

[2] C. Mai, S. Pedersen, L. Hansen, K. L. Jepsen, and Z. Yang, “Subsea
Infrastructure Inspection : A Review Study,” pp. 71–76, 2016.

[3] Y. Guo, H. Li, and P. Zhuang, “Underwater Image Enhancement Using
a Multiscale Dense Generative Adversarial Network,” IEEE Journal of
Oceanic Engineering, vol. 45, no. 3, pp. 862–870, 2020.

[4] C. International, “2021 Virtual Research Exchange Asset inspection
powered by computer vision : The use of deep neural networks for
automating the detection and classification of pipeline external,” no.
March, 2021.

[5] F. R. Petraglia, R. Campos, J. G. R. C. Gomes, and M. R. Petraglia,
“Pipeline tracking and event classification for an automatic inspection
vision system,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS). Baltimore, MD, USA: IEEE, May 2017, pp. 1–4.
[Online]. Available: http://ieeexplore.ieee.org/document/8050761/

[6] V. Bharti, D. Lane, and S. Wang, “Learning to Detect Subsea Pipelines
with Deep Segmentation Network and Self-Supervision,” 2020 Global
Oceans 2020: Singapore - U.S. Gulf Coast, 2020.

[7] A. Stamoulakatos, J. Cardona, C. McCaig, D. Murray, H. Filius,
R. Atkinson, X. Bellekens, C. Michie, I. Andonovic, P. Lazaridis,
A. Hamilton, M. Hossain, G. Caterina, and C. Tachtatzis, “Automatic
annotation of subsea pipelines using deep learning,” Sensors (Switzer-
land), vol. 20, no. 3, 2020.

[8] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning
and generalization capacities via ibn-net,” 2020.

[9] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” 2017.

[10] M. Jacobi and D. Karimanzira, “Underwater pipeline and cable in-
spection using autonomous underwater vehicles,” in 2013 MTS/IEEE
OCEANS - Bergen, June 2013, pp. 1–6.

[11] M. Jacobi and D. Karimanzira, “Multi sensor underwater pipeline
tracking with AUVs,” in 2014 Oceans - St. John’s. St.
John’s, NL: IEEE, September 2014, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/7003013/

[12] V. Bharti, D. Lane, and S. Wang, “Robust Subsea Pipeline Tracking
with Noisy Multibeam Echosounder,” AUV 2018 - 2018 IEEE/OES
Autonomous Underwater Vehicle Workshop, Proceedings, 2018.

[13] M. Narimani, S. Nazem, and M. Loueipour, “Robotics vision-based
system for an underwater pipeline and cable tracker,” in OCEANS 2009-
EUROPE, May 2009, pp. 1–6.

[14] P. Zingaretti and S. M. Zanoli, “Robust real-time detection of an
underwater pipeline,” Engineering Applications of Artificial Intelligence,
vol. 11, no. 2, pp. 257–268, April 1998. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0952197697000018

[15] G. Conte, S. Zanoli, A. M. Perdon, G. Tascini, and P. Zingaretti,
“Automatic analysis of visual data in submarine pipeline inspection,”
in OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean
- Prospects for the 21st Century, vol. 3, Sep. 1996, pp. 1213–1219 vol.3.
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